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On the nonlinear stability of Maxwellian states for discrete
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Abstract. By introducing appropriate weights in the energy method we propose a new
technique for studying the nonlinear stability of Maxwellian states for discrete velocity models
(McKean and Broadwell) of the extended Boltzmann equation.

1. Introduction

Recently discrete velocity models of the Boltzmann equation have become quite popular,
both for their fluid dynamics applications [1] and for the mathematical problems they have
raised [2]. Among the latter, a significant role is played by the stability of equilibria (the
so-called Maxwellian states) and related relaxation problems [3, 4]. In some recent papers
[5, 6] such a question has been addressed for the extended version of the simplest and most
ancient discrete models (Carleman, McKean and Broadwell). In such a context, test particles
are allowed to interact with the field particles of a given background by absorption and
generation events, in addition to the usual elastic scattering process. External sources may
also be present. This new feature adds simply linear and constant terms to the usual quadratic
terms in the collision part of the kinetic equations; however, this changes considerably the
structure of the equations themselves. In [5, 6] the linear stability of Maxwellian states
to space-dependent perturbations was studied. In this paper we shall perform nonlinear
stability analysis on the real line in the presence of sources. This requires a generalization
of the standard energy methods, which have always proved very powerful and effective in
fluid dynamics [7], but fail for the considered kinetic problems. If the generalization may be
guessed properly by clever inspection for the Carleman model, a specific careful treatment
is needed for the other less elementary models.

In section 2 the modified energy method is presented and discussed, with reference to
a set ofn semilinear hyperbolic partial differential equations with quadratic nonlinearities
describing a general discrete velocity model in kinetic theory, even though more general
nonlinear terms could be easily included. The established differential inequality determines
a criterion for nonlinear stability, and guarantees exponential relaxation to equilibrium when
the initial perturbation is small enough. The criterion can be checked analytically forn = 2,
and may then be applied in order to prove stability for all two-velocity models. In higher
dimensions (n > 3) a complete analytical solution of the related minimum problem is not
practicable, in general, but significant information may be obtained from the analysis.
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Section 3 is devoted to the extended McKean two-velocity model (n = 2). Multiple
Maxwellian states may occur in this case, and the stability of all of them for varying
parameters is studied analytically. In the final section the extended Broadwell model in
three dimensions is illustrated as a prototype of the stability problems to be dealt with
whenn > 3. Even for the values of parameters excluded by analytical results, numerical
verification indicates actual stability in all of the many cases tested.

2. Modified energy method

Suppose thatu(x, t) ∈ Rn satisfies

ut +Dux = Au+ F(u) (1)

whereD is a diagonaln×n real matrix,A is ann×n real matrix andF(u) ∈ Rn is given by

F(u)i =
∑
j,k

fijkujuk i = 1, . . . , n (2)

wherefijk are some real numbers. We assume thatu(·, t) ∈ L2(R)n andux(·, t) ∈ L2(R)n

for t > 0, that is,u(·, t) ∈ H 1(R)n for t > 0. This is the most general form of the extended
discrete Boltzmann equation for a single gas in a participating background medium when
all interactions are binary, after translating the considered Maxwellian state to the origin.

In [5] and [6] we studied the linearized version of (1) and (2) for some special important
models (Carleman, McKean, Broadwell) and concluded their stability. Here we would like
to show that solutions of the corresponding nonlinear systems decay exponentially for all
choices of parameters, provided that the initial values ofui are small enough. We use
a modified energy method with a careful selection of weights. Our approach is general
enough to be applicable, in principle, to any problem of the kind (1) and (2), and thus
to essentially any discrete velocity model of the extended Boltzmann equation. A special
case was worked out directly in [6] for the extended Carleman model. The McKean and
Broadwell models will be specifically considered in sections 3 and 4.

Let W be a diagonal matrix with diagonal entrieswi ≡ Wii > 0, i = 1, . . . , n. Taking
a scalar product, denoted as usual by(·, ·), of (1) with Wu gives

(Wu, u)t + (WDu, u)x = 2(WAu, u)+ 2(WF(u), u). (3)

Let λw be the smallest of the real numbersλ for which

(WAz, z) 6 λ(Wz, z) for all z ∈ Rn. (4)

Thus
1

2

d

dt

∫ ∞
−∞
(Wu, u)dx 6 λw

∫ ∞
−∞
(Wu, u)dx +

∫ ∞
−∞
(WF(u), u)dx. (5)

Using Holder’s inequality twice gives

(WF(u), u) =
∑
ijk

wifijkuiujuk =
∑
jk

(∑
i

wifijkui

)
ujuk

(WF(u), u)2 6
(∑

jk

wjwku
2
j u

2
k

)∑
jk

(
∑

i wifijkui)
2

wjwk

= (Wu, u)2
∑
jk

(
∑

i wifijkui)
2

wjwk

6 C2
1(Wu, u)

3 whereC1 =
(∑

ijk

wif
2
ijk

wjwk

)1/2

. (6)
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Using (6) in (5) gives

1

2

d

dt

∫ ∞
−∞
(Wu, u)dx 6 λw

∫ ∞
−∞
(Wu, u)dx + C1(Wu, u)

1/2
∞

∫ ∞
−∞
(Wu, u)dx (7)

where(Wu, u)∞ ≡ supx(Wu(x, t), u(x, t)).
Taking a derivative of (1) with respect tox and taking the scalar product withWux

gives

(Wux, ux)t + (WDux, ux)x = 2(WAux, ux)+ 2(WF(u)x, ux)

6 2λw(Wux, ux)+ 2(WF(u)x, ux). (8)

Note that

(F (u)i)x =
∑
jk

(fijk + fikj )uk(uj )x

so hence we can proceed, as in (6), to obtain

(WF(u)x, ux) 6 C2(Wu, u)
1/2(Wux, ux) whereC2 =

(∑
ijk

wi(fijk + fikj )2
wjwk

)1/2

. (9)

Using (9) in (8) and integrating gives

1

2

d

dt

∫ ∞
−∞
(Wux, ux) dx 6 λw

∫ ∞
−∞
(Wux, ux) dx + C2(Wu, u)

1/2
∞

∫ ∞
−∞
(Wux, ux) dx. (10)

DefineE(t) > 0 by

E(t)2 =
∫ ∞
−∞
((Wu, u)+ (Wux, ux)) dx. (11)

Adding (7) and (10) gives

EE′ 6 λwE2+ C3(Wu, u)
1/2
∞ E2 C3 = max{C1, C2}. (12)

Note thatf (x)2 = 2
∫ x
−∞ f (t)f

′(t) dt 6 2‖f ‖2‖f ′‖2 and hence

‖f ‖2
∞ 6 ‖f ‖2

2+ ‖f ′‖2
2 for f ∈ H 1(R). (13)

(13) implies that(Wu, u)1/2∞ 6 E and therefore

E′ 6 λwE + C3E
2 (14)

which implies thatif λw < 0 thenE(t) → 0 exponentially ast → ∞ provided that
E(0) < −λw/C3. In other words, ifλw < 0 then all solutions of (1), which are small
enough initially, decay exponentially.

2.1. Aboutλw

Let A be a n × n real matrix and letW be a diagonal matrix with diagonal entries
wi ≡ Wii > 0, i = 1, . . . , n. We definedλw to be the smallest of the real numbersλ
for which

(WAz, z) 6 λ(Wz, z) for all z ∈ Rn. (15)

Note thatλw is the largest eigenvalue of

Aw ≡ 1
2(W

1/2AW−1/2+W−1/2A∗W 1/2). (16)
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Consider, for example,

A =
(−1 4

0 −1

)
. (17)

The matrix has eigenvalues−1. If we simply takewi = 1, as in the usual energy approach,
thenλw = 1, which is useless in (14)—we needλw < 0. In general,λw = −1+ 2

√
w1/w2

in this example.
Thus, for a givenA we need to find weightswi that give the smallestλw. If µ is any

eigenvalue ofA andAx = µx then

Reµ (Wx, x) = (AwW 1/2x,W 1/2x) 6 λw(W 1/2x,W 1/2x) (18)

which implies

Reµ 6 λw. (19)

Thus, there exists infwi>0 λw and we will denote it by3. Note that3 may not be attained
as the above example shows. In case of 2× 2 matrices it is easy to see directly that

3 = A11+ A22

2
+
((

A11− A22

2

)2

+max{0, A12A21}
)1/2

. (20)

3 is actually attained whenA12A21 6= 0, and the corresponding weights are given by
w1/w2 = |A21/A12|. Note that whenA12A21 > 0 then3 is equal to the largest eigenvalue
of the 2× 2 matrixA, whereas3 is greater than the real part of any eigenvalue ofA when
A12A21 < 0. Finding3 for larger matrices is much more involved.

Note thatλw is also the largest eigenvalue of
1
2(A+W−1A∗W). (21)

Assume it to be simple and letz be the corresponding eigenvector. Hence

(WA+ A∗W)z = 2λwWz. (22)

An infinitesimal change dW produces changes dz, dλw which satisfy

(dWA+ A∗ dW)z+ (WA+ A∗W) dz = 2 dλw Wz+ 2λw dW z+ 2λwW dz. (23)

Taking a scalar product withz gives

((dWA+ A∗ dW)z, z) = 2 dλw(Wz, z)+ 2λw(dW z, z) (24)

which simplifies to

dλw(Wz, z) = (Az− λwz, dW z) (25)

and therefore
∂λw

∂wi
= zi(Az− λwz)i

(Wz, z)
i = 1, . . . , n. (26)

When the multiplicity ofλw is bigger than 1 then (26) gives different directional derivatives
that correspond to different eigenvectors and hence theλw surface has a corner in such a
case.

When the minimumλw is attained and is not in a corner then one can use (26) to find
it. Equation (26) suggests that we examine various cases separately. In the case when all
zi 6= 0 we have to have

Az = λwz and (WA+ A∗W)z = 2λwWz (27)
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and hence

Az = λwz and A∗Wz = λwWz. (28)

Thus, in this case, the smallestλw equals the largest eigenvalue ofA and it occurs when

wi = yi/zi for i = 1, . . . , n (29)

wherey 6= 0 is such thatA∗y = λwy. Thus (29) provides the optimal choice of the weights
for all values of the matrix elements inA for which the previous assumptions hold.

3. Extended McKean model

The most typical two-velocity model of the extended Boltzmann equation, together with the
Carleman model considered already in [6], is the extended McKean model, given by

∂N1

∂t
+ ∂N1

∂x
= −N1N2+N2

2 − εN1+ χηρ + S1 (30)

∂N2

∂t
− ∂N2

∂x
= N1N2−N2

2 − εN2+ (1− χ)ηρ + S2 (31)

whereρ = N1 + N2. ε > 0, η > 0 and 06 χ 6 1 are constants.Si > 0 are sources and
S = S1 + S2 > 0. ε represents an absorption coefficient, andη takes generation processes
(such as fission for neutrons or ionization for electrons) into account. The factorχ describes
the angular distribution of generated particles. The standard McKean model used in classical
kinetic theory corresponds to the limiting caseη = ε = S = 0.

Non-trivial, non-negative, constant solutions of (30) and (31) are called Maxwellian
states. To obtain them, add (30) to (31), which gives againρ(ε − η) = S and ε > η.
Solving (31) when(1− χ)ηρ + S2 > 0 gives

N2 = ρ − ε
4
+
(
(ρ − ε)2

16
+ (1− χ)ηρ + S2

2

)1/2

N1 = ρ −N2. (32)

When(1− χ)ηρ + S2 = 0, i.e. whenχ = 1 andS2 = 0, then we have

N2 = 0 N1 = ρ (33)

and whenρ > ε, i.e. S > ε(ε − η), we also have another solution

N2 = ρ − ε
2

N1 = ρ + ε
2

. (34)

Perturbationsui of a Maxwellian stateN1, N2 satisfy

∂u1

∂t
+ ∂u1

∂x
= (−N2− ε + χη)u1+ (2N2−N1+ χη)u2+ u2

2− u1u2 (35)

∂u2

∂t
− ∂u2

∂x
= (N2+ (1− χ)η)u1+ (N1− 2N2− ε + (1− χ)η)u2− u2

2+ u1u2. (36)

We will show now that the perturbations decay exponentially, if they are initially small
enough, for all values of the parameters, except when the Maxwellian state is given by (33)
with ρ > ε. So, the Maxwellian state given by (33) is nonlinearly stable forρ < ε and
it loses its stability to the coexisting Maxwellian state (34) whenρ > ε. The Maxwellian
state given by (32) is always nonlinearly stable.

Let us examine first the case when the Maxwellian state is given by (33). In this case

A =
(
η − ε η − ρ

0 ρ − ε
)
. (37)
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Equation (20) implies that3 = max{η − ε, ρ − ε}. Thus3 < 0 iff ρ < ε, which shows
nonlinear stability of the Maxwellian state (33) forρ < ε.

Let us examine next the Maxwellian states (32) and (34). Note thatN2 > 0 and

A =
(−N2− ε + χη 2N2−N1+ χη
N2+ (1− χ)η N1− 2N2− ε + (1− χ)η

)
(38)

andA21 > 0.
Let us consider first the caseA12 > 0. Note that3, given by (20), is in this case the

largest eigenvalue ofA. The characteristic polynomial ofA can be written as

λ2+ (3N2−N1+ 2ε − η)λ+ (ε − η)(3N2−N1+ ε) = 0 (39)

with rootsη− ε < 0 andN1− 3N2− ε. SinceN2 > 0, (31) implies thatN1− 3N2− ε < 0
and hence3 < 0.

WhenA12 < 0 then (20) implies that3 = max{A11, A22}. Since obviouslyA11 < 0 we
only need to show thatA22 < 0 in order to conclude that3 < 0. This is obvious for the
Maxwellian state (34) sinceA22 = (ε − ρ)/2< 0 (recall thatχ = 1 in this case). The rest
of this section is devoted to showing

A22 = N1− 2N2− ε + (1− χ)η < 0 (40)

for the Maxwellian state (32). Equation (40) is equivalent to

−ρ − ε
4
+ 3

(
(ρ − ε)2

16
+ (1− χ)ηρ + S2

2

)1/2

− (1− χ)η > 0 (41)

which is implied by

(ρ − ε)2+ (8ρ + ε)η(1− χ)− 2η2(1− χ)2+ 9S2 > 0. (42)

Whenχ = 1, thenS2 > 0 for the Maxwellian state (32) and hence (42) holds. Assume
from now on thatχ < 1. Equation (42) is implied by

F(η) ≡ (ρ − ε)2+ (8ρ + ε)η(1− χ)− 2η2(1− χ)2 > 0. (43)

SinceF(0) > 0, the concavity ofF implies that it is enough to show thatF(ε) > 0 in
order to conclude thatF(η) > 0 for η ∈ (0, ε). To show thatF(ε) > 0 note that

F(ε) = ρ2+ (6− 8χ)ρε + e2χ(3− 2χ) (44)

and also

F(ε) = (ρ + (3− 4χ)ε)2+ 9ε2(1− χ)(2χ − 1). (45)

So, whenχ > 1/2, thenF(ε) > 0 by (45). Whenχ < 3/4, the minimum, with respect to
ρ, of (44) occurs at a negative value; however, (44) is non-negative whenρ = 0.

4. Broadwell model

Another typical discrete velocity model of the extended Boltzmann equation is the following
six-velocity Broadwell model

∂N1

∂t
+ ∂N1

∂x
= N2

3 −N1N2− εN1+ χ1ηρ + S1 (46)

∂N2

∂t
− ∂N2

∂x
= N2

3 −N1N2− εN2+ χ2ηρ + S2 (47)

∂N3

∂t
= −1

2
(N2

3 −N1N2)− εN3+ χ3ηρ + S3 (48)
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on the line (−∞ < x < ∞), whereρ = N1 + N2 + 4N3. Parametersε > 0, η > 0,
χ1 > 0, χ2 > 0, χ3 > 0 are constants such thatχ1+ χ2+ 4χ3 = 1. Si > 0 are sources and
S = S1 + S2 + 4S3 > 0. The physical meaning of all of them is the same as before, with
χi describing the angular distribution of generated particles.

Maxwellian states are constantsN1, N2 andN3 that satisfy (46)–(48) and which are
physically relevant, i.e.Ni > 0 and ρ > 0. Adding (46)–(48) gives, in this case,
ρ(ε − η) = S. Therefore,

η < ε and ρ = S/(ε − η). (49)

This enables us to define the effectiveχ̃i by

χ̃iερ = χiηρ + Si for i = 1, 2, 3. (50)

Note thatχ̃1+ χ̃2+ 4χ̃3 = 1. Equations (46)–(48) imply, in this case, that

N1 = (q + χ̃1)ρ N2 = (q + χ̃2)ρ N3 = (−q/2+ χ̃3)ρ (51)

whereq = (N2
3 −N1N2)/(ερ) and henceq has to satisfy

3q2/4+ q(χ̃1+ χ̃2+ χ̃3+ ε/ρ∗)+ χ̃1χ̃2− χ̃2
3 = 0 (52)

which implies that

q = 2(χ̃2
3 − χ̃1χ̃2)

χ̃1+ χ̃2+ χ̃3+ ε/ρ + ((χ̃1+ χ̃2+ χ̃3+ ε/ρ)2+ 3(χ̃2
3 − χ̃1χ̃2))1/2

. (53)

Let N1, N2 andN3 be a Maxwellian state and assume that perturbationsNj + uj (x, t)
also satisfy (46)–(48). This implies that

∂u1

∂t
+ ∂u1

∂x
= (χ1η − ε −N2)u1+ (χ1η −N1)u2+ (4χ1η + 2N3)u3+ u2

3− u1u2 (54)

∂u2

∂t
− ∂u2

∂x
= (χ2η −N2)u1+ (χ2η − ε −N1)u2+ (4χ2η + 2N3)u3+ u2

3− u1u2 (55)

∂u3

∂t
=
(
χ3η + N2

2

)
u1+

(
χ3η + N1

2

)
u2+ (4χ3η − ε −N3)u3− u

2
3− u1u2

2
. (56)

This case belongs of course to the class defined by (1) and (2), but an analytical
determination of3 is impossible. However, under the conditions for which (29) is valid,
the optimal weights are given by (29) itself, and a long calculation gives

w1 = 1

2N1(χ1− χ2)+N3(1− χ2+ χ1)+ 2χ1η
(57)

w2 = 1

2N2(χ2− χ1)+N3(1− χ1+ χ2)+ 2χ2η
(58)

w3 = 4

N1χ2+N2χ1+ 2χ3(N1+N2+ η) (59)

andλw = η− ε < 0—exactly what we need and expect physically. However, note thatw1

andw2 can become negative when|χ1−χ2| is large—so other cases have to be considered.
There are six other cases, corresponding to variouszi = 0, that have to be considered in
the case of 3×3 matrices, and in all of them the proof of existence of a negativeλw would
be required for stability.

We conclude our investigation on the Broadwell model by presenting the results of
extensive numerical computations aimed at checking analytical predictions and at gaining
more insight into the cases in which such predictions are still missing. More then 400 000
random selections of parameters 0< χ1 < 1, 0< χ2 < 1− χ1, 0 < e< 10, 0< η < ε,



5400 M Miklavčič and G Spiga

0 < Si < 1 were made and in each case the smallestλw was found by checking all seven
cases as well as the possibility of corners.In all cases the smallestλw was negative—which
indicates the stability of the Maxwellian states for each specific case.

In about 77% of cases it turned out that the smallestλw is obtained by weights given
in (57)–(59); for example,

χ1 = 0.7 χ2 = 0.2 ε = 2 η = 1 S1 = S2 = S3 = 0.6

3 = −1. (60)

In about 8% of cases the smallestλw is obtained by setting (26) to zero withz1 = 0; for
example,

χ1 = 0.1 χ2 = 0.8 ε = 2 η = 1 S1 = S2 = S3 = 0.6

3 = −0.968 360. (61)

In about 8% of cases the smallestλw is obtained by setting (26) to zero withz2 = 0; for
example,

χ1 = 0.8 χ2 = 0.1 ε = 2 η = 1 S1 = S2 = S3 = 0.6

3 = −0.968 360. (62)

In about 7% of cases the smallestλw is obtained in a corner—when the multiplicity ofλw
is equal to 2; for example,

χ1 = 0.7 χ2 = 0.1 ε = 2 η = 1 S1 = S2 = S3 = 0.6

3 = −0.992 814. (63)

These are the only cases that showed up. Choosingwi = 1, as in the usual energy method,
gives positiveλw in each of the above examples (60)–(63).
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